GOVERNMENT OF INDIA MINISTRY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF SCIENCE AND TECHNOLOGY LOK SABHA UNSTARRED QUESTION NO. 663 ANSWERED ON 23/07/2025

CARBON CAPTURE AND UTILISATION (CCU) TESTBEDS

663. SHRI DINESHBHAI MAKWANA:

DR. SANJAY JAISWAL:

Will the Minister of SCIENCE AND TECHNOLOGY be pleased to state:

(a) the objectives and significance of establishing five CCU testbeds in the cement sector and manner in which this initiative supports India's net-zero target by 2070;

(b) the details of institutions and industry partners involved in the CCU testbeds and the distinct technological solutions being developed at each site; and

(c) the expected impact of these CCU testbeds on CO_2 reduction in the cement industry and their potential for scaling to other hard-to-abate sectors?

ANSWER

MINISTER OF STATE (INDEPENDENT CHARGE) OF THE MINISTRY OF SCIENCE AND TECHNOLOGY AND EARTH SCIENCES (DR. JITENDRA SINGH)

विज्ञान और प्रौदयोगिकी तथा पृथ्वी विज्ञान मंत्रालय के राज्य मंत्री (स्वतंत्र प्रभार)

(डॉ. जितेंद्र सिंह)

(a) The Department of Science & Technology (DST) is in the process of considering the recommendation of the Expert Panel for five Carbon Capture and Utilization (CCU) testbeds in the Cement sector in different parts of the country. The objectives of these CCU testbeds are to capture Carbon Dioxide (CO_2) emission from cement manufacturing and convert it into value-added products like synthetic fuels, urea, soda ash, concrete aggregates, and food-grade CO_2 . These testbeds are going to act as a platform for validating and demonstrating CCU technologies at small scale in real industrial settings through Industry-Academia collaborations. This initiative has significant relevance to enable Industrial decarbonisation in the country with special focus on emissions-intensive sectors like Cement by promoting circular carbon economy, thereby aligning well with India's overarching target of net-zero by 2070.

(b) The Expert Panel constituted by DST has recommended five CCU testbeds, and the Department is in the process of considering the recommendations of the Expert Panel for further processing and financial sanctions. The site-wise details of Institutions and Industry partners involved

in these recommended CCU testbeds along with proposed technological solutions to be deployed, are given below:

SI. No	Site location	Institutions	Industry Partner	Technological Solutions
1	Chittorgarh	National Council for		Oxygen-based Calcination
	Raiasthan	Cement and Building	Cement	to capture 2 TPD (Tonnes
		Material, Ballabhgarh	Limited	Per Day) of CO ₂ and its
		and Indian Institute		utilization (0.4 TPD) in
		of Technology.		lightweight concrete
		Roorkee		products and olefins.
2.	Sundergarh,	Indian Institute of	JSW	Carbon-negative using
	Odisha	Technology, Kanpur	Cement	solvent-based carbon
			Limited	capture technology at a
				scale of 1 TPD and
				utilizing captured CO ₂ for
				mineralisation into
				concrete using ICCM
				(Integrated Carbon
				Capture and Minorolization)
				technology
3.	Raiganipur.	Indian Institute of	Dalmia	Water-based
	Odisha	Technology Bombay.	Cement	catalyst-driven CO ₂
		Mumbai	(Bharat)	capture process, at a
			Ltd.	scale of 2 TPD, designed
				for integration within a
				live cement plant,
				enabling conversion of
				captured CO ₂ into calcium
				carbonate, sodium
				bicarbonate and formic
			1014	acid.
4.	Kurnool,	CSIR-Indian Institute	JSW	Vacuum Swing Adsorption
	Andhra Pradesh	of Petroleum,	Cement	Process for CO ₂ capture (1
		Institute of	Linnted	Gas and its utilization
		Technology, Tirupati,		within the construction
		and Indian Institute		material value chain.
		of Science,		
		Bengaluru		
5.	Reddipalayam,	Indian Institute of	Ultratech	New kiln burning
	Tamil Nadu	Technology Madras	Cement	technology based on
		and Birla Institute of	Ltd.	oxygen-enriched burning,
		Technology and		capture using
		Science (BITS)		adsorption/absorption,
		Pilani, Goa		and mineralization of
				captured CO_2 (2 TPD)
				using concrete blocks,
				waste concrete fines and
				concrete plant sludge.

(c) The Carbon Capture and Utilization (CCU) testbeds are expected to lower Carbon Dioxide (CO_2) emissions within India's cement sector, which constitutes approximately 7-8% of the Nation's industrial carbon emissions. These recommended CCU testbeds are envisaged to demonstrate the carbon capture and utilization at small scale i.e. up to 02 TPD (Tonnes Per Day). Apart from reduction in CO_2 emissions, these testbeds are expected to generate valuable by-products, such as synthetic fuels and construction materials, and thereby contributing to the circular carbon economy.

Further, the successful implementation of testbeds is going to enable Indian industries to adopt the technologies and scale up them to a full commercial level. These modular solutions have the potential to replicate in other hard-toabate sectors, including power, iron & steel, oil & natural gas, chemical industry, etc., through customized engineering into pre-existing industrial frameworks.

* * * * *