GOVERNMENT OF INDIA DEPARTMENT OF SPACE

RAJYA SABHA

UNSTARRED QUESTION NO. 616

TO BE ANSWERED ON THURSDAY, JULY 24, 2025

SATELLITES LAUNCHED BY ISRO

616. SHRI MANAS RANJAN MANGARAJ:

Will the PRIME MINISTER be pleased to state:

- (a) the number of satellites launched by ISRO since 2020 and their objectives;
- (b) whether private participation has increased under INSPACe;
- (c) the impact of satellite data on agriculture and natural disaster management;
- (d) whether India plans a second manned space mission; and
- (e) if so, the timeline and collaborating agencies?

ANSWER

MINISTER OF STATE IN THE MINISTRY OF PERSONNEL, PUBLIC GRIEVANCES & PENSIONS AND IN THE PRIME MINISTER'S OFFICE (DR. JITENDRA SINGH):

a) The following is the number of satellites realized by ISRO since 2020 along with its objectives:

Sl. No.	Satellite (along	Objectives
	with launch date)	
1	GSAT-30	Provide communication services from Geostationary
	January 17, 2020	orbit in C and Ku bands

Sl. No.	Satellite (along	Objectives
	with launch date)	
2	EOS-01	Earth observation satellite, intended for applications
	November 07,	in agriculture, forestry and disaster management
	2020	support.
3	CMS-01	Communication satellite envisaged for providing
	December 17,	services in Extended-C band
	2020	
4	EOS-03	Earth observation satellite in Geostationary orbit to
	August 12, 2021	provide near real time imaging of large area region of
		interest at frequent intervals.
5	EOS-04	Radar imaging satellite to provide high quality
	February 14, 2022	images under all weather conditions for applications
		such as Agriculture, forestry & plantations, soil
		moisture & hydrology and flood mapping.
6	INS-2TD	Technology demonstrator satellite
	February 14, 2022	
7	GSAT-24	Communication satellite for meeting DTH
	June 23, 2022	application needs (1st Demand Driven mission of
		M/s. NewSpace India Limited)
8	EOS-02	Earth Observation satellite operating in infra-red
	August 07, 2022	band with high spatial resolution
9	EOS-06	Provide continuity in services of Oceansat-2
	November 26,	spacecraft
	2022	
10	INS-2B	Nanosatellite jointly developed by India and Bhutan
	November 26,	
	2022	
11	EOS-07	Technology demonstration mission
	February 10, 2023	
12	NVS-01	First of the second-generation satellites envisaged for
	May 29, 2023	the Navigation with Indian Constellation (NavIC)
		services

Sl. No.	Satellite (along	Objectives
	with launch date)	
13	Chandrayaan-3	Follow-on mission to Chandrayaan-2 to demonstrate
	July 14, 2023	end-to-end capability in safe landing and roving on
		the lunar surface
14	Aditya-L1	Satellite dedicated to the comprehensive study of the
	September 02,	Sun
	2023	
15	XPoSat	First dedicated polarimetry mission to study various
	January 01, 2024	dynamics of bright astronomical X-ray sources in
		extreme conditions
16	INSAT-3DS	Enhanced meteorological observations and
	February 17, 2024	monitoring of land and ocean surfaces for weather
		forecasting and disaster warning
17	EOS-08	Technology demonstration mission
	August 16, 2024	
18	GSAT-N2	Communication satellite to provide broadband and
	November 19,	in-flight connectivity needs across India
	2024	
19	SPADEX-A	Technology demonstrator mission for the
	December 30,	demonstration of in-space docking using two small
	2024	spacecraft
20	SPADEX-B	
	December 30,	
	2024	
21	NVS-02	Second-generation satellites envisaged for the
	January 29, 2025	Navigation with Indian Constellation (NavIC)
		services
22	EOS-09	Provide continuous and reliable remote sensing data
	May 18, 2025	for operational applications across various sectors.

(b) Yes sir, as detailed below:

- i. Post the announcement of space sector reforms in 2020, the number of registered space start-ups has grown exponentially to over 300.
- ii. IN-SPACe has facilitated two successful sub-orbital flights from Indian space start-ups in November 2022 and May 2024 respectively. Additionally, Six Non-Governmental Entities (NGEs) have launched fourteen satellites into orbit, demonstrating their capabilities.
- iii. Another parameter to gauge the impact of space sector reforms is by the number of proposals submitted for facilitation and authorization. IN-SPACe has received a total 658 applications from more than 380 NGEs for various activities. This support extended in Launch Vehicles and subsystem (89), Satellite launch and Subsystems (236), Ground Segment (43), Space applications (124), Promotional and Design Lab activities (121) & etc. as on 31st March, 2025.
- iv. IN-SPACe has issued 77 authorizations, signed 79 MoUs, issued 59 registration certificates to 3l data disseminators, signed 91 Joint Project Implementation Plans (JPIPs), and 79 transfer of technology agreements post Space Sector Reforms as on 31st March 2025.
- (c) Satellite data is used for enabling food security by generating multiple forecasts of crop production for major crops, towards informed decisions on stock & price management and export/import policy decisions.

Satellite data is used for generating crop & location specific weather based agro advisories for income enhancement of farming community, under the Gramin Krishi Mausam Seva (GKMS).

Mapping of Kharif rice fallows helped crop intensification in 6 eastern states (Odisha, Jharkhand, Bihar, Chhattisgarh, Assam and West Bengal), under National Food Security Mission.

Semi-physical yield model developed by ISRO for rice & wheat using space technology inputs has been selected as part of the suite of models of YES-TECH programme under PMFBY, Ministry of Agriculture & Farmers Welfare (MoAFW). The yield model developed by ISRO is being operationally rolled out for faster and transparent claim settlements of farmers in 9 states.

Satellite data is used in the hazard; vulnerability; risk (HVR) assessment, disaster monitoring, damage assessment, and development of early warning systems for major disasters such as flood, cyclones, landslide, earthquakes and forest fire. The space-

based disaster specific products are being used by MHA, NDMA, State DMS organisations, and NDRF.

Flood inundation is being mapped for major floods every year (in 16 States during 2024) using satellite data, and the maps help the state nodal organisations for effective flood disaster management.

Flood Hazard Zonation atlases have been developed using historical satellite-derived flood data since 1998 for several major flood-prone states, including Assam, Bihar, Uttar Pradesh, West Bengal, Odisha, and Andhra Pradesh. These serve as non-structural input for flood hazard mitigation and for developmental planning.

As part of the National Hydrology Project, ISRO developed spatial flood early warning systems for Godavari and Tapi Rivers, and are being run operationally since 2022. It helps decision making on flood hazard mitigation, including evacuation planning.

Active forest fires are detected using satellite data daily 6 to 8 times during the Indian forest fire season, and is ongoing for the fire season in 2025 also. This input helps the State Forest Departments for taking risk management measures.

- (d) As part of approval received from Government for Gaganyaan follow-on Missions Leading to Precursor for Bharatiya Antariksh Station (BAS) "Revision in Gaganyaan Programme" on 9th October 2024, a second manned mission H2 will follow first crewed mission H1.
- (e) 2nd crewed mission is targeted after the accomplishment of 1st crewed mission. Since the 2nd crewed mission is similar to 1st crewed mission, existing collaborations with various agencies is expected to continue.
